

Comparing Sentiment Engine Performance on Reviews and Tweets

Emanuele Di Rosa, PhD

CSO, Head of Artificial Intelligence

Finsa s.p.a.

emanuele.dirosa@finsa.it www.app2check.com www.finsa.it

Motivations and Goals

- Computing *accurately* a sentiment expressed in a text is a task largely needed in the market, and ready-to-use APIs with pre-trained sentiment classifiers are available.
- However, sentiment engines asked to classify a text as positive, negative or neutral, do
 not reach a 100% of accuracy. They show misclassifications in multiple cases, even in
 cases that are straightforward for humans: this involves both research and industrial
 tools.

- Computing accurately a sentiment expressed in a text is a task largely needed in the market, and ready-to-use APIs with pre-trained sentiment classifiers are available.
- However, sentiment engines asked to classify a text as positive, negative or neutral, do
 not reach a 100% of accuracy. They show misclassifications in multiple cases, even in
 cases that are straightforward for humans: this involves both research and industrial
 tools.
- On the one hand, academic research advances are visible and international challenges
 are organized each year, asking researchers to train/fine-tune their engines to work well
 on specific tasks (e.g. polarity classification, subjectivity or irony detection), on specific
 sources/domains (e.g tweets about politics), and specific languages (English, Italian,
 Arabic, etc.)

- Computing *accurately* a sentiment expressed in a text is a task largely needed in the market, and ready-to-use APIs with pre-trained sentiment classifiers are available.
- However, sentiment engines asked to classify a text as positive, negative or neutral, do
 not reach a 100% of accuracy. They show misclassifications in multiple cases, even in
 cases that are straightforward for humans: this involves both research and industrial
 tools.
- On the one hand, academic research advances are visible and international challenges are organized each year, asking researchers to train/fine-tune their engines to work well on specific tasks (e.g. polarity classification, subjectivity or irony detection), on specific sources/domains (e.g tweets about politics), and specific languages (English, Italian, Arabic, etc.)
- On the other hand, tools needed by industry have to face the need of the market, asking
 for engines that can receive as input <u>any</u> textual source (tweets, reviews, etc) and being
 applied to <u>general purpose applications</u>.

• Computing *accurately* a sentiment expressed in a text is a task largely needed in the market, and ready-to-use APIs with pre-trained sentiment classifiers are available.

However, sentiment engines asked to classify a text as positive, negative or neutral, do
not reach a 100% of accuracy. They show misclassifications in multiple cases, even in

cases tha

On the or

are organ

on <u>specit</u>

sources/c

tools.

We *ideally* need industrial sentiment engines providing <u>high average performance on multiple sources and domains</u>

dustrial

challenges

o *work well*n specific

Italian,

Arabic, etc.)

On the other hand, tools needed by industry have to face the need of the market, asking
for engines that can receive as input <u>any</u> textual source (tweets, reviews, etc) and being
applied to <u>general purpose applications</u>.

Goals

- 1. Sentiment engine performance: *Perceived by humans* VS *experimentally measured*
- 2. What's the performance gap between industrial "general purpose" engines and research engines, since the latter are built to show high performance on *specific settings* (source, domain, language, task, etc)? Are there differences in performance analyzing tweets or reviews in different languages (e.g. English and Italian)?

Outline

1. Motivations and goals

- 2. Sentiment Engine (*mis*)classifications
 - On simple cases
 - On difficult cases: «Cross-domain» Sentiment Classification
- 3. Experimental Evaluation of Research and Industrial Engines
 - Results on Tweets
 - Results on Product Reviews

4. Conclusions

Sentiment Engine (mis)classifications

Sentiment Engines on simple classifications

We consider some industrial and research sentiment engines providing an online demo:

- Research engines:
 - <u>iFeel Platform</u> (running 18 research tools implementing different methods)
 - Standford Deep Learning
- Industrial tools:
 - IBM Watson
 - Google Cloud Natural Language API (Google CNL)
 - Finsa X2Check

We test 3 simple sentences with «clear» sentiment classification:

- A negative sentence
- A positive sentence
- A negative («difficult») sentence

Engines on simple classifications: iFeel Platform

Methods Results

"I hate this game"

Your input: I hate this game			
Method Name	Status	Method Score	Polarity
OPINIONLEXICON	Completed	-1	Negative
SENTISTRENGTH	Completed	-0.75	Negative
SOCAL	Completed	-6	Negative
HAPPINESSINDEX	Completed	-0.1124999999999992	Negative
SANN	Completed	1	Positive
EMOTICONSDS	Completed	1	Positive
SENTIMENT140	Completed	-9.882	Negative
STANFORD	Completed	-1	Negative
AFINN	Completed	-3	Negative
MPQA	Completed	-1	Negative
NRCHASHTAG	Completed	-15.06499999999998	Negative
EMOLEX	Completed	-1	Negative
EMOTICONS	Completed	0	Neutral
PANAST	Completed	0	Neutral
SASA	Completed	1	Positive
SENTIWORDNET	Completed	-0.7575258926544899	Negative
VADER	Completed	-0.5719	Negative
UMIGON	Completed	-1	Negative

Engines on simple classifications: StandfordDL

"I hate this game"

Sentiment Trees

You can double-click on each tree figure to see its expanded version with greater details. There are 5 classes of sentiment classification: very negative, negative, neutral, positive, and very positive.

Engines on simple classifications: IBM Watson

"I hate this game"

Engines on simple classifications: iFeel Platform

Methods Results

"I like this game"

Your input: I like this game			
Method Name	Status	Method Score	Polarity
OPINIONLEXICON	Completed	1	Positive
SENTISTRENGTH	Completed	0.25	Positive
SOCAL	Completed	1	Positive
HAPPINESSINDEX	Completed	0.495000000000001	Positive
SANN	Completed	1	Positive
EMOTICONSDS	Completed	1	Positive
SENTIMENT140	Completed	-1.115	Negative
STANFORD	Completed	0	Neutral
AFINN	Completed	2	Positive
MPQA	Completed	1	Positive
NRCHASHTAG	Completed	-2.657	Negative
EMOLEX	Completed	0	Neutral
EMOTICONS	Completed	0	Neutral
PANAST	Completed	0	Neutral
SASA	Completed	1	Positive
SENTIWORDNET	Completed	0.3729485599002547	Positive
VADER	Completed	0	Neutral
UMIGON	Completed	1	Positive

Engines on simple classifications: StandfordDL

"I like this game"

Sentiment Analysis

| Information | Live Demo | Sentiment Treebank | Help the Model | Source Code

Sentiment Trees

You can double-click on each tree figure to see its expanded version with greater details. There are 5 classes of sentiment classification: very negative, negative, neutral, positive, and very positive.

Engines on simple classifications: IBM Watson

"I like this game"

Engines on simple classifications: iFeel Platform

"I just connected my game with my facebook account and instead of saving the progress I have lost all my progress and it came on Level 1 although I was on IvI 98 Please help!!!!!"

Method Name	Status	Method Score	Polarity
OPINIONLEXICON	Completed	1.666666666666667	Positive
SENTISTRENGTH	Completed	0.25	Positive
SOCAL	Completed	0.8	Positive
HAPPINESSINDEX	Completed	0.328750000000001	Positive
SANN	Completed	0	Neutral
EMOTICONSDS	Completed	1	Positive
SENTIMENT140	Completed	-350.673999999999	Negative
STANFORD	Completed	-1	Negative
AFINN	Completed	0.8	Positive
MPQA	Completed	1	Positive
NRCHASHTAG	Completed	-152.7289999999999	Negative
EMOLEX	Completed	1	Positive
EMOTICONS	Completed	0	Neutral
PANAST	Completed	0	Neutral
SASA	Completed	1	Positive
SENTIWORDNET	Completed	0.16028867864857324	Positive
VADER	Completed	0.7762	Positive
UMIGON	Completed	-1	Negative

Engines on simple classifications: iFeel Platform

"I just connected my game with my facebook account and instead of saving the progress I have lost all my progress and it came on Level 1 although I was on IvI 98 Please help!!!!!"

Method Name	Status	Method Score	Polarity
OPINIONLEXICON	Completed	1.666666666666667	Positive
SENTISTRENGTH	Completed	0.25	Positive
SOCAL	Completed	0.8	Positive
HAPPINESSINDEX	Completed	0.328750000000001	Positive
SANN	Completed	0	Neutral
EMOTICONSDS	Completed	1	Positive
SENTIMENT140	Completed	-350.673999999999	Negative
STANFORD	Completed	-1	Negative
AFINN	Completed	0.8	Positive
MPQA	Completed	1	Positive
NRCHASHTAG	Completed	-152.7289999999993	Negative
EMOLEX	Completed	1	Positive
EMOTICONS	Completed	0	Neutral
PANAST	Completed	0	Neutral
SASA	Completed	1	Positive
SENTIWORDNET	Completed	0.16028867864857324	Positive
VADER	Completed	0.7762	Positive
UMIGON	Completed	-1	Negative

Engines on simple classifications: Standford DL

Sentiment Trees

You can double-click on each tree figure to see its expanded version with greater details. There are 5 classes of sentiment classification: very negative, negative, neutral, positive, and very positive.

Download Results

20

Engines on simple classifications: IBM Watson

Overall Sentiment

Observations

- We showed objective examples of sentiment *misclassification* performed by popular research and industrial engines, even on cases that are *straightforward for humans*
- However, it is not possible to make any kind of generalization of these results or let us somehow rank the engines involved in the previous examples. In order to do that, a wide experimental analysis is needed.
- Performance in sentiment polarity classification depends on many factors, involving the classifier's training (*source*) set and test (*target*) set. Some sentiment classifiers are built to perform better on a specific:
 - Topic domain (e.g. movies, politics)
 - Textual source (tweets, reviews, etc.)
 - Language
 - . . .

Cross-domain classification and domain-adaptation

How do we classify the polarity of the following text?

"Candy crush is my addiction, I love it!"

This is a case of domain-dependent sentiment. Moreover, It is well known in literature that:

- Users often use some different words when they express sentiment in different domains [Pan S.J.,et al 2010]
- Classifiers trained on one domain may perform poorly on another domain [Pang, et al. 2008].
 - → Cross-domain sentiment analysis research area works on *domain-adaptation techniques* [Blitzer, et al 2007], [Pan S.J.,et al 2010], [Liu B., 2012], [Wu F.,et al, 2016], [Wu F.,et al, 2017].
 - → Sometimes domain-adaptation may also lead to worse performance [Pan, S.J.,et al 2010].

Document-level VS Sentence-level VS Entity level SA

"I like this game but after the iOS update I get a crash when the app starts. Please do something!! "

- It is probably impossible to agree about its overall overall (document-level) sentiment classification
- It is known in literature [1] that group of humans, when evaluating sentiment (the polarity in three classes), agree in about the 80% of the cases since there can be controversial cases due to the subjective qualitative evaluation.

[1] T. Wilson, J. Wiebe, P. Hoffmann. Recognizing Contextual Polarity in Phraselevel Sentiment Analysis. In proc. of HLT 2005.

Document-level VS Sentence-level VS Entity level SA

"I like this game but after the iOS update I get a crash when the app starts. Please do something!!"

Document-level VS Sentence-level VS Entity level SA

"I like this game but after the iOS update I get a crash when the app starts. Please do something!!"

Experimental Evaluation of Research and Industrial Engines

Experimental Evaluation

- In order to fairly compare engines performance, we need:
 - a gold standard reference
 - benchmarks on multiple sources and mixed domains
 - benchmarks in more than one language
- Tweets → we see a worst case for industrial engines
 - Benchmarks and engines from Evalita SentiPolC 2016 for Italian language
 - Benchmarks and engines from SemEval 2017 for English language
- Reviews → we see a worst case for research engines
 - Amazon Product Reviews: Benchmarks from ESWC Semantic Sentiment Analysis 2016

Experimental Evaluation

- About pre-trained, ready-to-use industrial Sentiment APIs: most of the commercial engines for SA, in terms of service, do not allow to use their APIs to perform an experimental comparative analysis.
- The goal of such tools is to measure user opinion and, as per every measurement tool, being aware of its accuracy is fundamental.
- This is even more important in sentiment analysis since, as we recalled, pre-trained engines may in general show a significant different performance depending on the target test set.
- We considered industrial engines, having a public sentiment API and without explicit restrictions in the terms of service to make a comparative analysis

General purpose APIs:

- √ Google CNL
- √ Finsa X2Check

X2Check adaptations, specifically trained on the target source:

- ✓ App2Check specifically trained on apps reviews.
- ✓ Tweet2Check specifically trained on tweets.
- ✓ Amazon2Check is specifically trained on amazon reviews.

	System	Const/unc	Pos	Neg	F
1	SwissCheese	С	0.6529	0.7128	0.6828
2	UniPI	c	0.6850	0.6426	0.6638
3	Unitor	u	0.6354	0.6885	0.662
4	Tweet2Check	u	0.6696	0.6442	0.6569
5	ItaliaNLP	С	0.6265	0.6743	0.6504
6	X2Check	u	0.6629	0.6442	0.6491
7	IRADABE	С	0.6426	0.648	0.6453
8	UniBO	С	0.6708	0.6026	0.6367
9	IntIntUniba	С	0.6189	0.6372	0.6281
10	CoLingLab	С	0.5619	0.6579	0.6099
11	INGEOTEC	u	0.5944	0.6205	0.6075
12	ADAPT	c	0.5632	0.6461	0.6046
13	App2Check	u	0.5466	0.6250	0.5857
14	samskara	С	0.5198	0.6168	0.5683
15	Google CNL_05-2017	u	0.5426	0.5530	0.5478
16	Baseline		0.4518	0.3808	0.4163

Tab 1: Evaluation on 2K tweets in Italian from Evalita SentiPolC 2016. Industrial engines added to the official results. Industrial engines VS research engines *specifically trained/tuned* on the given domain/source.

	System	Const/unc	Pos	Neg	F					
1	SwissCheese	С		0.7128						
2	HeiDI	^	N 695N	0 6/26	0.6638					
3).662					
4		$(E_1pos + E_1pos)$								
5	$Pos = \frac{1}{2}$	$Pos = \frac{\left(F1_0^{pos} + F1_1^{pos}\right)}{2}$								
6		2			.6491					
7		$Neg = rac{\left(F1_0^{neg} + F1_1^{neg} ight)}{2}$								
8										
9	Neg = -	2		_	.6281					
10		_			.6099					
11		Nea + P	05)		.6075					
12	$F = \frac{C}{C}$	$\frac{Neg+P}{2}$.6046					
13		2			.5857					
14					.5683					
15	Google CNL_05-2017	u	0.5426	0.5530	0.5478					
16	Baseline		0.4518	0.3808	0.4163					

Tab 1: Evaluation on 2K tweets in Italian from Evalita SentiPolC 2016. Industrial engines added to the official results. Industrial engines VS research engines *specifically trained/tuned* on the given domain/source.

			System	Const/unc	Pos	Neg	F			
	\rightarrow	1	SwissCheese	С	0.6529	0.7128	0.6828	—		
		2	UniPI	С	0.6850	0.6426	0.6638	٨		2 60/
A - 2.40/		3	Unitor	u	0.6354	0.6885	0.662		\mathbf{L}_F —	2.6%
$\Delta_F = 3.4\%$		4	Tweet2Check	u	0.6696	0.6442	0.6569	—		
		5	ItaliaNLP	С	0.6265	0.6743	0.6504			
	\rightarrow	6	X2Check	u	0.6629	0.6442	0.6491			
		7	IRADABE	С	0.6426	0.648	0.6453			
		8	UniBO	С	0.6708	0.6026	0.6367			
		9	IntIntUniba	С	0.6189	0.6372	0.6281			
		10	CoLingLab	С	0.5619	0.6579	0.6099			
		11	INGEOTEC	u	0.5944	0.6205	0.6075			
		12	ADAPT	С	0.5632	0.6461	0.6046			
		13	App2Check	u	0.5466	0.6250	0.5857			
		14	samskara	С	0.5198	0.6168	0.5683			
		15	Google CNL_05-2017	u	0.5426	0.5530	0.5478			
		16	Baseline		0.4518	0.3808	0.4163			

Tab 1: Evaluation on 2K tweets in Italian from Evalita SentiPolC 2016. Industrial engines added to the official results. Industrial engines VS research engines *specifically trained/tuned* on the given domain/source.

		System	Const/unc	Pos	Neg	F
	1	SwissCheese	С	0.6529	0.7128	0.6828
	2	UniPI	С	0.6850	0.6426	0.6638
-	3	Unitor	u	0.6354	0.6885	0.662
Λ — 1 20%	4	Tweet2Check	u	0.6696	0.6442	0.6569
$\Delta_F = 1.3\%$	5	ItaliaNLP	С	0.6265	0.6743	0.6504
-	6	X2Check	u	0.6629	0.6442	0.6491
	7	IRADABE	С	0.6426	0.648	0.6453
	8	UniBO	С	0.6708	0.6026	0.6367
	9	IntIntUniba	С	0.6189	0.6372	0.6281
	10	CoLingLab	С	0.5619	0.6579	0.6099
	11	INGEOTEC	u	0.5944	0.6205	0.6075
	12	ADAPT	С	0.5632	0.6461	0.6046
	13	App2Check	u	0.5466	0.6250	0.5857
	14	samskara	С	0.5198	0.6168	0.5683
	15	Google CNL_05-2017	u	0.5426	0.5530	0.5478
	16	Baseline		0.4518	0.3808	0.4163

Tab 1: Evaluation on 2K tweets in Italian from Evalita SentiPolC 2016. Industrial engines added to the official results. Industrial engines VS research engines *specifically trained/tuned* on the given domain/source.

		System	Const/unc	Pos	Neg	F				
	1	SwissCheese	С	0.6529	0.7128	0.6828				
	2	UniPI	С	0.6850	0.6426	0.6638				
	3	Unitor	u	0.6354	0.6885	0.662				
	4	Tweet2Check	u	0.6696	0.6442	0.6569				
	5	ItaliaNLP	С	0.6265	0.6743	0.6504				
-	6	X2Check	u	0.6629	0.6442	0.6491				
	7	IRADABE	С	0.6426	0.648	0.6453				
	8	UniBO	С	0.6708	0.6026	0.6367				
	9	IntIntUniba	С	0.6189	0.6372	0.6281				
$\Delta_F = 10.1\%$	10	CoLingLab	С	0.5619	0.6579	0.6099				
$\Delta_F = 10.170$	11	INGEOTEC	u	0.5944	0.6205	0.6075				
	12	ADAPT	c	0.5632	0.6461	0.6046				
	13	App2Check	u	0.5466	0.6250	0.5857	—			
	14	samskara	c	0.5198	0.6168	0.5683		Δ_F	= 3.8	3%
\rightarrow	15	Google CNL_05-2017	u	0.5426	0.5530	0.5478	—			
	16	Baseline		0.4518	0.3808	0.4163				

Tab 1: Evaluation on 2K tweets in Italian from Evalita SentiPolC 2016. Industrial engines added to the official results. Industrial engines VS research engines *specifically trained/tuned* on the given domain/source.

Evaluation on Tweets in English

	System	AvgR	AvgF1-PN	Acc
1	DataStories	0.681	0.677	0.651
	BB_twtr	0.681	0.685	0.658
3	LIA	0.676	0.674	0.661
4	Senti17	0.674	0.665	0.652
5	NNEMBs	0.669	0.658	0.664
28	ej-za-2017	0.571	0.539	0.582
	LSIS	0.571	0.561	0.521
30	Tweet2Check	0.566	0.565	0.526
31	X2Check	0.563	0.561	0.523
32	XJSA	0.556	0.519	0.575
33	Neverland-THU	0.555	0.507	0.597
34	MI&T-Lab	0.551	0.522	0.561
35	Google CNL_06-2017	0.550	0.514	0.567
36	diegoref	0.546	0.527	0.540
37	App2Check	0.541	0.508	0.545
38	xiwu	0.479	0.365	0.547
39	SSN_MLRG1	0.431	0.344	0.439
40	YNU-1510	0.340	0.201	0.387
41	WarwickDCS	0.335	0.221	0.382
	Avid	0.335	0.163	0.206

Tab 2: Evaluation on 12,284 tweets in English from SemEval 2017, Task 4, subtask A. Industrial engines added to the official results. . Industrial engines VS research engines *specifically trained/tuned* on the given domain/source.

Evaluation on Tweets in English

	System	AvgR	AvgF1-PN	Acc
1	DataStories	0.681	0.677	0.651
	BB_twtr	0.681	0.685	0.658
_			~	

39	SSN_MLRG1	0.431	0.344	0.439
40	YNU-1510	0.340	0.201	0.387
41	WarwickDCS	0.335	0.221	0.382
	Avid	0.335	0.163	0.206

Tab 2: Evaluation on 12,284 tweets in English from SemEval 2017, Task 4, subtask A. Industrial engines added to the official results. Industrial engines VS research engines *specifically trained/tuned* on the given domain/source.

Evaluation on Tweets in English

		3				
		System	AvgR	AvgF1-PN	Acc	
	1	DataStories	0.681	0.677	0.651	
-		BB_twtr	0.681	0.685	0.658	
	3	LIA	0.676	0.674	0.661	
	4	Senti17	0.674	0.665	0.652	
	5	NNEMBs	0.669	0.658	0.664	
$\Delta_{AvgF1} = 12.4\%$						
110 91 1	28	ej-za-2017	0.571	0.539	0.582	
		LSIS	0.571	0.561	0.521	
	30	Tweet2Check	0.566	0.565	0.526	
-	31	X2Check	0.563	0.561	0.523	—
	32	XJSA	0.556	0.519	0.575	
	33	Neverland-THU	0.555	0.507	0.597	$\Delta_{AvgF1} = 4.7\%$
	34	MI&T-Lab	0.551	0.522	0.561	-Avgr1
	35	Google CNL_06-2017	0.550	0.514	0.567	—
	36	diegoref	0.546	0.527	0.540	
	37	App2Check	0.541	0.508	0.545	
	38	xiwu	0.479	0.365	0.547	
	39	SSN_MLRG1	0.431	0.344	0.439	
	40	YNU-1510	0.340	0.201	0.387	
	41	WarwickDCS	0.335	0.221	0.382	
		Avid	0.335	0.163	0.206	

Tab 2: Evaluation on 12,284 tweets in English from SemEval 2017, Task 4, subtask A. Industrial engines added to the official results. . Industrial engines VS research engines *specifically trained/tuned* on the given domain/source.

Evaluation on Amazon Product Reviews in English

	Tool	M-F1	Acc	F1(-)	F1(+)
1	Amazon2Check	I	l	ı	0.860
2	X2Check	0.862	0.862	0.868	0.856
3	Google CNL_05-2017	I		ı	l
4	App2Check	ı	l	I	0.685
5	SentiStrength	I	l	ı	0.692
6	StanfordDL	0.602	0.604	0.705	0.498

Tab 5: Evaluation on about 200,000 generic amazon product reviews in English from ESWC Semantic Sentiment Analysis 2016. Industrial engines VS research engines *not* specifically trained on the target domain/source.

Evaluation on Amazon Product Reviews in English

English from ESVVC Semantic Sentiment Analysis 2016. Industrial engines VS research engines *not* specifically trained on the target domain/source.

Evaluation on Amazon Product Reviews in English

	[Tool	M-F1	Acc	F1(-)	F1(+)	
		Amazon2Check	0.865	0.864	0.869	0.860	
$\Delta_{MF1} = 4.1\%$	→		1	I	l	0.856	•
$\Delta_{MF1} - 4.170$	\longrightarrow	Google CNL_05-2017	0.821	0.827	0.853	0.790	$\Delta_{MF1} = 23.2\%$
		4 App2Check	0.729	0.736	0.772	0.685	$\Delta_{MF1} - 25.270$
		5 SentiStrength	0.630	0.552	0.568	0.692	←
		5 StanfordDL	0.602	0.604	0.705	0.498	

Tab 5: Evaluation on about 200,000 generic amazon product reviews in English from ESWC Semantic Sentiment Analysis 2016. Industrial engines VS research engines *not* specifically trained on the target domain/source.

Overall Results

In our experimental evaluation, we showed that:

- considering the best performing research tool <u>specifically trained</u> on the target source as a reference (worst case for industrial APIs – tweets from SemEval 2017 and Evalita SentiPolc 2016):
 - X2Check is lower than 3.4% of F-score on Italian and 11.6% of Avg-F1 on English benchmarks
 - Google CNL is lower than 13.5% of F-score on Italian and 16.3% of Avg-F1 on English benchmarks
 - App2Check [not tuned on tweets] is lower than 9.7% of F-score on Italian and 16.9% on English benchmarks
- considering the *best performing research tool <u>not</u> specifically trained on the target source* as a reference (worst case for research engines amazon product reviews from ESWC SSA 2016):
 - on Amazon Product Reviews in English
 - ✓ X2Check shows a macro-f1 score of 23.2% higher than the best research tool
 - ✓ Google CNL shows a macro-f1 score of 19.1% higher than the best research tool
 - ✓ App2Check [not tuned on amazon reviews] is lower than 13.3% of MF1 on English benchmarks from Amazon product reviews

Conclusions

- Sentiment Analysis is still a very complex task and evaluating the engines results on individual examples, counting just on the «human perception», is not a scientific approach and lead to wrong conclusions about engine performance.
- However, such «manual inspection» may help to focus on the engine's defects, understand the reasons why some misclassifictions occur and better design/improve the engine.
- It is necessary evaluate the performance of a «general purpose» (pre-trained) sentiment engine
 APIs, through an extensive experimental analysis on multiple textual sources and domains, taking
 into account the overall average KPIs (accuracy, macro-F1 score, etc).
- Since sentiment engines are measurement tools, it would be better if companies provided, together with the pre-trained models, also some performance indicators on specific settings (source, topic domains, language, etc), or at least let buyers perform a comparative analysis.
- Domain/source-specific models show in general better results compared to pre-trained «general purpose» classifiers. However, applying domain-adaptation techniques or recognizing the best specialized model to apply, may reduce misclassifications on the target domain.

Thank you

Emanuele Di Rosa, PhD

CSO, Head of Artificial Intelligence

Finsa s.p.a.

emanuele.dirosa@finsa.it www.app2check.com www.finsa.it

Engines on simple classifications: X2Check

"I hate this game"

Engines on simple classifications: X2Check

"I like this game"

Engines on simple classifications: X2Check

Analyzed sentence I just connected my game with my facebook account and instead of saving the progress i have lost all my progress and it came on Level 1 although I was on Ivl 98 Please help!!!!

